GRade 3	GRade 4	GRADE 5	GRADE 6	GRADE 7	GRADE 8
A. Patterns and Functions					
1. Identify, describe, extend, and create numeric patterns and functions a) Represent and analyze numeric patterns using skip counting - Assessment limit: Use 2, 5, 10, or 100 starting with any whole number ($0-1000$) b) Represent and analyze numeric patterns using skip counting - Assessment limit: Use 3 or 4 starting with $0,1,2,3$, or $4(0-30)$ c) Represent and analyze numeric patterns using skip counting backward - Assessment limit: Use 10 or 100 starting with any whole number ($0-1000$) d) Complete a function table using a given addition or subtraction rule 2. Identify, describe, extend, and create non-numeric growing or repeating patterns a) Represent and analyze growing patterns using symbols, shapes, designs, or pictures - Assessment limit: Start at the beginning, show at least 3 levels but no more than 5 levels, and ask for the next level b) Represent and analyze repeating patterns using symbols, shapes, designs, or pictures - Assessment limit: Use no more than 4 objects in the core of the pattern	1. Identify, describe, extend, and create numeric patterns and functions a) Represent and analyze numeric patterns using skip counting - Assessment limit: Use patterns of $3,4,6,7,8$, or 9 starting with any whole number ($0-100$) b) Create a one-operation (+ or -) function table to solve a real world problem c) Complete a function table using a oneoperation ($+,-, \mathrm{x}, \div$ with no remainders) rule - Assessment limit: Use whole numbers ($0-50$) d) Describe the relationship that generates a one-operation rule 2. Identify, describe, extend, analyze, and create a non-numeric growing or repeating pattern a) Generate a rule for the next level of the growing pattern - Assessment limit: Use at least 3 levels but no more than 5 levels b) Generate a rule for a repeating pattern - Assessment limit: Use no more than 4 objects in the core of the pattern c) Create a non-numeric growing or repeating pattern	1. Identify, describe, extend, and create numeric patterns and functions a) Interpret and write a rule for a oneoperation ($+,-, \mathrm{x}, \div$ with no remainders) function table - Assessment limit: Use whole numbers or decimals with no more than 2 decimal places $(0-1000)$ b) Create a one-operation (x, \div with no remainders) function table to solve a real world problem c) Complete a one-operation function table - Assessment limit: Use whole numbers with $+,-, x, \div($ with no remainders $)$ or use decimals with no more than two decimal places with,$+-(0-200)$ d) Apply a given two operation rule for a pattern - Assessment limit: Use two operations $(+,-$, x) and whole numbers ($0-100$)	1. Identify, describe, extend, and create numeric patterns and functions a) Identify and describe sequences represented by a physical model or in a function table b) Interpret and write a rule for a oneoperation (,,+- x, -) function table - Assessment limit: Use whole numbers or decimals with no more than two decimal places $(0-10,000)$ c) Complete a function table with a given two-operation rule - Assessment limit: Use the operations of $(+,-, x)$, numbers no more than 10 in the rule, and whole numbers (0 50)	1. Identify, describe, extend, and create linear patterns and functions a) Complete a function table with a given two-operation rule - Assessment limit: Use the operations $(+,-, x)$, numbers no more than 20 in the rule and whole numbers ($0-500$) b) Identify and extend a geometric sequence c) Describe how a change in one variable in a linear function affects the other variable in a table of values	1. Identify, describe, extend, and create patterns, functions and sequences a) Determine the recursive relationship of arithmetic sequences represented in words, in a table or in a graph - Assessment limit: Provide the $\mathrm{n}^{\text {th }}$ term no more than 10 terms beyond the last given term using common differences no more than 10 with integers (-100 to 5000) b) Determine the recursive relationship of geometric sequences represented in words, in a table, or in a graph - Assessment limit: Provide the $\mathrm{n}^{\text {th }}$ term no more than 5 terms beyond the last given term using the recursive relationship of geometric sequences with whole numbers and a common ratio of no more than 5:1 $(0-10,000)$ c) Determine whether relationships are linear or nonlinear when represented in words, in a table, symbolically, or in a graph - Assessment limit: Use a graph to determine if a relationship is linear or nonlinear d) Determine whether relationships are linear or nonlinear when represented symbolically

МАТНЕМАТІС

STANDARD 1.0 KNOWLEDGE OF ALGEBRA, PATTERNS, AND FUNCTIONS - Students will algebraically represent, model, analyze, or solve mathematical or real-world problems involving patterns or functional relationships

GRADE 3	GRADE 4	GRADE 5	GRADE 6	GRADE 7	GRADE 8
C. Numeric and Graphic Representations of Relationships					
1. Locate points on a number line a) Represent whole numbers on a number line - Assessment limit: Use whole numbers (0-500) b) Represent proper fractions on a number line - Assessment limit: Use fractions that have denominators of 2,3 , or 4	1. Locate points on a number line and in a coordinate grid a) Represent mixed numbers and proper fractions on a number line - Assessment limit: Use proper fractions with a denominators of 6,8 , or 10 b) Identify positions in a coordinate plane - Assessment limit: Use the first quadrant and ordered pairs of whole numbers ($0-20$) c) Represent decimals on a number line	1. Locate points on a number line and in a coordinate grid a) Represent decimals and mixed numbers on a number line - Assessment limit: Use decimals with no more than two decimal places ($0-100$) or mixed numbers with denominators of $2,3,4,5,6,8$, or 10 (0-10) b). Create a graph in a coordinate plane - Assessment limit: Use the first quadrant and ordered pairs of whole numbers ($0-50$)	1. Locate points on a number line and in a coordinate plane a) Represent rational numbers on a number line - Assessment limit: Use integers (-20 to 20) b) Graph ordered pairs in a coordinate plane. - Assessment limit: Use no more than 3 ordered pairs of integers (-20 to 20) or no more than 3 ordered pairs of fractions/mixed numbers with denominators of 2 (-10 to 10) c) Graph linear data from a function table	1. Locate points on a number line and in a coordinate plane a) Represent rational numbers on a number line - Assessment limit: Use rational numbers (-100 to 100) b) Graph ordered pairs in a coordinate plane - Assessment limit: Use no more than 4 ordered pairs of rational numbers (-20 to 20) c) Graph linear equations with one operation in a coordinate plane	1. Locate points on a number line and in a coordinate plane a) Graph linear equations in a coordinate plane - Assessment limit: Use two unknowns having integer coefficients (-9 to 9) and integer constants (-20 to 20)
			2. Analyze linear relationships a) Identify and describe the change represented in a graph - Assessment limit: Identify increase, decrease, or no change b) Translate the graph of a linear relationship onto a table of values that illustrates the type of change	2. Analyze linear relationships a) Identify and describe the change represented in a table of values - Assessment limit: Identify increase, decrease, or no change b) Describe the rate of change of a linear relationship by a table of values and a graph	2. Analyze linear relationships a) Determine the slope of a graph in a linear relationship - Assessment limit: Use an equation with integer coefficients (-9 to 9) and integer constants (-20 to 20) and a given graph of the relationship b) Determine the slope of a linear relationship represented numerically or algebraically

GRADE 3	GRADE 4	GRADE 5	GRADE 6	GRADE 7	GRADE 8
	2. Analyze the relationship between plane geometric figures and surfaces of solid geometric figures a) Compare a plane figure to surfaces of solid geometric figure - Assessment limit: Analyze or identify the number or arrangement of squares needed to make a cube and triangles/rectangles needed to make a triangular pyramid or rectangular pyramid	2. Analyze the relationship between plane geometric figures and faces of solid geometric figures a) Compare a plane figure to faces of solid geometric figure - Assessment limit: Analyze and identify the number or arrangement of rectangles needed to make a rectangular prism, number of triangles/rectangles needed to make a triangular prism, and the number of circles/rectangles needed to make a cylinder.			
C. Representation of Geometric Figures 1. Represent plane geometric figues a) Sketch triangles, quadrilaterals, pentagons, hexagons, octagons, and circles	C. Representation of Geometric Figures 1. Represent plane geometric figues a) Sketch acute, right, obtuse angles, and parallel and intersecting line segments	C. Representation of Geometric Figures 1. Represent plane geometric figures a) Identify, describe, and draw angles, parallel line segments, and perpendicular line segments - Assessment limit: Provide their dimensions as whole numbers ($0-20$) or angle measurements ($0^{\circ}-179^{\circ}$)	C. Representation of Geometric Figures 1. Represent plane geometric figures a) Draw geometric figures using a variety of tools Assessment limit: Draw triangles given the measures of 2 sides and one angle or 2 angles and 1 side using whole numbers ($0-20$) and angle measures ($0^{\circ}-179^{\circ}$) b) Identify, describe, or draw a polygon - Assessment limit: Use the first quadrant given no more than six coordinates c) Identify or describe angle relationships - Assessment limit: Use perpendicular bisectors or angle bisectors	C. Representation of Geometric Figures 1. Represent plane geometric figures a) Construct geometric figures using a variety of construction tools - Assessment limit: Construct a circle using a given line segment as the radius in whole number inches or centimeters b) Construct geometric figures using a variety of construction tools. - Assessment limit: Construct a line segment congruent to a given line segment c) Construct geometric figures using a variety of construction tools - Assessment limit: Construct a perpendicular bisector to a given line segment or a bisector of a given angle	C. Representation of Geometric Figures 1. Represent plane geometric figures a) Draw quadrilaterals - Assessment limit: Provide given whole number dimensions in inches or centimeters or angle measurements b) Construct perpendicular line segments - Assessment limit: Provide a given point on a given line segment c) Construct triangles - Assessment limit: Construct a triangle congruent to a given triangle
D. Congruence 1. Analyze congruent figures a) Identify and describe geometric figures as congruent - Assessment limit: Use the same shape and same size	D. Congruence 1. Analyze geometric figures a) Identify and describe geometric figures as congruent - Assessment limit: Identify the result in a transformation as being congruent to the original figure	D. Congruence and Similarity 1. Analyze similar figures to a) Identify or describe geometric figures as similar - Assessment limit: Use same shape and different size	D. Congruence and Similarity 1. Analyze congruent figures a) Identify and describe congruent polygons and their corresponding parts	D. Congruence and Similarity 1. Apply the properties of congruent polygons a) Determine the congruent parts of polygons - Assessment limit: Use the length of corresponding sides or the measure of corresponding angles and whole numbers ($0-1000$) b) Identify and describe similar polygons and their corresponding parts	D. Congruence and Similarity 1. Apply the properties of similar polygons a) Determine similar parts of polygons - Assessment limit: Use the length of corresponding sides or the measure of corresponding angles and rational numbers with no more than 2 decimal places (0 - 1000)
E. Transformations 1. Analyze a transformation a) Identify and describe the results of a slide, flip, and turn - Assessment limit: Use horizontal slide, flip over a vertical line, or turn of 90° clockwise around a given point of a geometric figure or picture 2. Analyze geometric figures and pictures a) Identify and describe symmetry - Assessment limit: Use no more than 4 lines of symmetry	E. Transformations 1. Analyze a transformation a) Identify and describe the results of translations, reflections, and rotations - Assessment limit: Use a horizontal line translation, reflection over a vertical line, or rotation of 90° clockwise around a given point of a geometric figure or picture	E. Transformations 1. Analyze a transformation a) Identify and describe the results of translations, reflections, and rotations of geometric figures - Assessment limit: Use translation along a vertical line, reflection over a horizontal line, or rotation 90° or 180° around a given point	E. Transformations 1. Analyze a transformation on a coordinate plane a) Plot the result of one transformation (translation, reflection, rotation) on a coordinate plane	E. Transformations 1. Analyze a transformation on a coordinate plane a) Identify, describe, and plot the results of one transformation on a coordinate plane - Assessment limit: Identify or plot the result of one translation (horizontal or vertical), reflection The Res b) Identiftand describe transformations symmetry Reasoning	E. Transformations 1. Analyze a transformation on a coordinate plane a) Identify, describe, and plot the results of multiple transformations on a coordinate plane - Assessment limit: Identify or plot the result of two transformations on one figure using translations (horizontal or vertical), reflections (horizontal or vertical), or rotations about a given point $\left(90^{\circ}\right.$ or $\left.180^{\circ}\right)$

GRADE 3	GRADE 4	GRADE 5	GRADE 6	GRADE 7	GRADE 8
A. Measurement Units	A. Measurement Units	A. Measurement Units			
1. Read customary and metric measurement units a) Estimate and determine length - Assessment limit: Use the nearest centimeter or $1 / 2$ inch b) Tell time in days, hours, minutes, and seconds - Assessment limit: Use the nearest minute using an analog clock c). Estimate and read temperature - Assessment limit: Use the nearest degree (${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$) d) Estimate and determine weight of objects - Assessment limit: Use the nearest pound or ounce	1. Read customary and metric measurement units a) Estimate and determine length and height - Assessment limit: Use the nearest millimeter or $1 / 4$ inch b) Estimate and determine weight or mass c) Estimate and determine capacity	1. Read customary and metric measurement units a) Estimate and determine weight or mass - Assessment limit: Use the nearest ounce for weight and the nearest gram for mass b) Estimate and determine capacity - Assessment limit: Use the nearest ounce			
B. Measurement Tools	B. Measurement Tools	B. Measurement Tools	B. Measurement Tools		
1. Measure in customary and metric units a) Measure length of objects and pictures of objects using a ruler, a tape measure, a yardstick, or a meter stick - Assessment limit: Use a ruler and the nearest centimeter or $1 / 2$ inch	1. Measure in customary and metric units a) Select and use appropriate tools and units - Assessment limit: Use the nearest millimeter or $1 / 4$ inch with a ruler	1. Measure in customary and metric units a) Select and use appropriate tools and units - Assessment limit; Measure length to $1 / 8$ inch with a ruler	1. Measure in customary and metric units a) Select and use appropriate tools and units - Assessment limit; Measure length to the nearest $1 / 16$ inch with a ruler		
b) Measure capacity of containers to the nearest cup, pint, quart, gallon, milliliter, and liter using graduated containers c) Measure weight of objects to the nearest ounce and pound and the mass of an object to the nearest gram and kilogram	2. Compare right angles to a corner	2. Measure angles a) Measure a single angle and angles in regular polygons - Assessment limit: Measure an angle between 0 and 180 to the nearest degree	2. Measure angles in polygons		

STANDARD 3.0 KNOWLEDGE OF MEASUREMENT - Students will identify attributes, units, or systems of measurements or apply a variety of techniques, formulas, tools or technology for determining measurements.

GRADE 3	GRADE 4	GRADE 5	GRADE 6	GRADE 7	GRADE 8
C. Applications in Measurement					
1. Apply measurement concepts a) Estimate and determine the perimeter of geometric figures and pictures on a grid - Assessment limit: Use counting and whole numbers ($0-50$) b) Estimate and determine the area of geometric figures and pictures on a grid - Assessment limit: Use counting of whole units and whole numbers ($0-50$)	1. Apply measurement concepts a) Determine perimeter - Assessment limit: Use polygons with no more than 6 sides given the length of the sides in whole numbers $(0-100)$ b) Determine area - Assessment limit: Use rectangles with the length of the sides in whole numbers $(0-100)$ c) Determine start time, elapsed time and end time - Assessment limit: Use hour and half hour intervals	1. Estimate and apply measurement formulas a) Determine perimeter - Assessment limit: Use polygons with no more than 8 sides and whole numbers ($0-500$) b) Determine area - Assessment limit: Use rectangles and whole numbers ($0-200$) c) Find the area and perimeter of any closed figure on a grid Assessment limit: Use whole and partial units (0-50) d) Estimate and determine volume by counting	1. Estimate and apply measurement formulas a) Estimate and determine the area of a polygon - Assessment limit: Use triangles and whole number dimensions ($0-200$) b) Estimate and determine the volume of a rectangular prism - Assessment limit: Use rectangular prisms and whole number dimensions ($0-1000$) c) Estimate and determine the area of a composite figure - Assessment limit: Use composite figures with no more than four polygons (triangles or rectangles) and whole number dimensions ($0-500$) d) Determine missing dimension of a quadrilateral given the perimeter length - Assessment limit: Find length in a quadrilateral given the perimeter with whole number dimensions ($0-200$) e) Determine the missing dimension of rectangles - Assessment limit: Find length in a square or rectangle given the area and whole number dimensions ($0-200$)	1. Estimate and apply measurement formulas a) Estimate and determine the area of quadrilaterals - Assessment limit: Use parallelograms or trapezoids and whole number dimensions ($0-1000$) b) Determine the surface area of geometric solids - Assessment limit: Use rectangular prisms with whole number dimensions ($0-1000$) c) Estimate pi using physical models d) Estimate and determine the volume of a triangular prism	1. Estimate and apply measurement formulas a) Estimate and determine the circumference or area of a circle - Assessment limit: Include circles using rational numbers with no more than 2 decimal places $(0-10,000)$ b) Estimate and determine area of a composite figure - Assessment limit: Include composite figures with no more than 6 polygons (triangles, rectangles, or circles) by measuring, partitioning, or using formulas with whole number dimensions ($0-10,000$) c) Estimate and determine the volume of a cylinder - Assessment limit: Use cylinders, the given the formula, and whole number dimensions ($0-10,000$) d) Determine the volume of cones, pyramids, and spheres e) Determine the surface area of cylinders, prisms, and pyramids
2. Calculate equivalent measurements a) Determine equivalent units of length - Assessment limit: Use 12 inches = 1 foot and 3 feet $=1$ yard and whole numbers ($0-30$)	2. Calculate equivalent measurements a) Determine equivalent units of length - Assessment limit: Use 36 inches = 1 yard and whole numbers ($0-100$) b) Determine equivalent units of time c) Determine equivalent units of capacity and weight within the same system	2. Calculate equivalent measurements a) Determine start, elapsed, and end time - Assessment limit: Use the nearest minute b) Determine equivalent units of measurement Assessment limit: Use seconds, minutes, and hours or pints, quarts, and gallons		2. Analyze measurement relationships a) Determine a missing dimension for a figure using a scale. - Assessment limit: Use a polygon with no more than 8 sides using whole numbers ($0-1000$) b) Determine the distance between 2 points using a drawing and a scale - Assessment limit: Use a scale of $1 \mathrm{~cm}=?, 1 / 4$ inch $=$?, or $1 / 2$ inch = ?, and whole numbers $(0-1000)$	2. Analyze measurement relationships a) Use proportional reasoning to solve measurement problems Assessment limit: Use proportions, scale drawings with scales as whole numbers, or rates using whole numbers or decimals ($0-1000$)

GRadE 3	GRADE4	GRADE 5	GRADE 6	GRADE 7	GRadE 8
ata Displays	ta Display	ata Display:	Pata Displays	Data Displa	Data Displays
1. Collect, organize, and display data a) Collect data by conducting surveys b) Organize and display data to make table using a variety of categories and sets of data - Assessment limit: Use no more than 4 categories from one set of data and whole numbers $(0-1000)$ c) Organize and display data to make pictographs using a variety of scales Assessment limit: Use scales of 2:1, 4:1, or $10: 1$ and whole numbers $(0-100)$ d) Organize and display data to make single bar graphs using a variety of categories and intervals - Assessment limit: Use no more than 4 ategories of data with intervals of 1,2 5, or 10 and whole numbers Organize and display data to make line plots using a variety of intervals	1. Collect, organize, and display data a) Collect data by conducting surveys to answer a question Organize b) Organize and display data in line plots and frequency tables using a variety of categories and sets of data - Assessment limit: Use line plots with no more than 20 pieces of unorganized data and a range of no more than 10 and whole numbers $(0-100)$	1. Collect, organize, and display data a) Collect data by conducting surveys to answer a question b) Organize and display data in stem- and-leaf plots - Assessment limit: Use no more than 20 data points and whole numbers ($0-100$) c) Organize and display data in line plots 20 pieces of data with no more than 20 pieces of data with a range of no more than 20 and whole numbers ($0-200$) d) Organize and display data in double bar graphs - Assessment limit: Use no more than 4 categories and intervals of $1,2,5$, or 10 and whole numbers $(0-100)$ Organize and display data in line graphs - Assessment limit: Use y-axis with intervals of $1,2,4,5$, or 10 and x -axis and whole numbers $(0-100)$ f) Determine the appropriate type of	1. Organize and display data a) Organize and display data to make frequency tables - Assessment limit: Use no more than 5 categories or ranges of numbers and total frequencies of no more than 25 b) Organize and display data to make stem-and-leaf plots Assessment limit: Use no more than 0 data points and whole numbers (0-99) c) Organize and display data using a back-to-back stem-and-leaf plot	1. Organize and display data a) Organize and display data using back- to-back stem-and-leaf plots - Assessment limit: Use no more than 20 data points using whole numbers ($0-999$) b) Organize and display data to make circle graphs	Organize and display data a) Organize and display data to make circle graphs - Assessment limit: Use no more than 5 categories with data in whole number bercents $\begin{aligned} & \text { Organize and display data to make }\end{aligned}$ box-and-whisker plots - Assessment limit: Use no more than 12 pieces of data and whole numbers $(0-1000)$ (0-1000) c) Organize and display data to make a Assessment limit: Use no more than 10 points and whole numbers $(0-1000)$

Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
B. Data Analysis 1. Analyze data a) Interpret data contained in tables using a variety of categories and intervals - Assessment limit: Use no more than 4 categories from one set of data and whole numbers ($0-1000$) b) Interpret data contained in pictographs using a variety of categories and intervals - Assessment limit: Use scales of 2:1, $4: 1$, or $10: 1$ and whole numbers ($0-100$) c) Interpret data contained in single bar graphs using a variety of categories and intervals - Assessment limit: Use no more than 4 categories of data, intervals of $1,2,5$, or 10 and whole numbers ($0-100$) d) Interpret data contained in line plots using a variety of intervals	B. Data Analysis 1. Analyze data a) Interpret line plots - Assessment limit: Use no more than 20 pieces of data with a range no more than 10 and whole numbers ($0-100$) b) Interpret line graphs - Assessment limit: Use the x-axis representing no more than 6 time intervals, the y-axis consisting of no more than 10 intervals with scales as factors of 100 using whole numbers ($0-100$) 2. Describe a set of data a) Determine median, mode, and range - Assessment limit: Use no more than 8 pieces of data and whole numbers ($0-100$) b) Model the mean of a set of data	B. Data Analysis 1. Analyze data a) Interpret and compare data in stem \& leaf plot - Assessment limit: Use no more than 20 data points and whole numbers ($0-100$) b) Interpret and compare data in line plots - Assessment limit: Use no more than 20 pieces of data with a range of no more than 20 and whole numbers ($0-100$) c) Interpret and compare data in double bar graphs - Assessment limit: Use no more than 4 categories and intervals of $1,2,5$, or 10 and whole numbers ($0-1000$) d) Interpret and compare data in double line graphs - Assessment limit: Use y-axis with intervals of $1,2,5$, or 10 and x-axis with no more than 10 time intervals and whole numbers $(0-100)$ e) Read circle graphs - Assessment limit: Use no more than 4 categories and data in whole numbers or percents which are multiples of 5 and whole numbers ($0-100$) 2. Describe a set of data (mean, median, mode) a) Determine the mean of a given data set or data display - Assessment limit: Use no more than 8 pieces of data and whole numbers without remainders ($0-1000$) b) Apply the range and measures of central tendency to solve a problem or answer a question	B. Data Analysis 1. Analyze data a) Interpret frequency tables - Assessment limit: Use no more than 5 categories or ranges of numbers and frequencies of no more than 25 b) Read and analyze circle graphs - Assessment limit: Use no more than 5 categories using data in whole numbers or percents $(0-1000)$ c) Interpret data from a stem-and-leaf plot 2. Describe a set of data a) Apply measures of central tendency (mean, median, mode)	B. Data Analysis 1. Analyze data a) Recognize and analyze faulty interpretation or representation of data - Assessment limit: Use the choice of graphical display or the scale as leading to faulty interpretation or representation of data b) Determine the best choice of a data display Assessment limit: Use a given data set c) Analyze misleading data representation 2. Describe a set of data a) Analyze measures of central tendency to determine or apply mean, median, mode - Assessment limit: Use no more than 15 pieces of data for the mean or median; or 15 to 30 pieces of data for the mode, using whole numbers or decimals with no more than 2 decimal places ($0-100$)	B. Data Analysis 1. Analyze data a) Interpret tables - Assessment limit: Use no more than 5 categories having no more than 2 quantities per category and whole numbers or decimals with no more than 2 decimal places $(0-100)$ b) Interpret box-and-whisker plots - Assessment limit: Use minimum, first (lower) quartile, median (middle quartile), third (upper) quartile, or maximum and whole numbers ($0-100$) c) Interpret scatter plots - Assessment limit: Use no more than 10 points using whole numbers or decimals with no more than 2 decimal places ($0-100$) d) Interpret circle graphs - Assessment limit: Use no more than 8 categories ($0-1000$) e) Analyze multiple box-and-whisker plots using the same scale

GRADE 3	GRADE 4	GRADE 5	GRADE 6	GRADE 7	GRADE 8
A. Sample Space 1. Identify possible outcomes a) Identify possible outcomes that make up the sample space for a given real life situation b) Identify possible outcomes that make up the sample space for a given experiment such as: flipping a coin, spinning a spinner, and rolling a number cube		A. Sample Space 1. Identify possible outcomes a) Determine possible outcomes of independent events - Assessment limit: Use two independent events with no more than 4 outcomes each and an organized list or tree diagram		A. Sample Space 1. Identify a sample space a) Determine the number of outcomes - Assessment limit: Use no more than 3 independent events with a sample space of no more than 6 outcomes in each event.	A. Sample Space 1. Identify a sample space a) Describe the difference between independent and dependent events b) Determine the number of outcomes - Assessment limit: Use no more than 5 dependent events with no more than 10 outcomes in the first event
B. Theoretical Probability 1. Identify the probability of one simple event a) Describe the probability of an event using words - Assessment limit: Use probability terms of more (or most) likely, less (or least) likely, or equally likely	B. Theoretical Probability 1. Determine the probability of one simple event comprised of equally likely outcomes a) Express the probability as a fraction - Assessment limit: Use a sample space of no more than 6 outcomes	B. Theoretical Probability 1. Determine the probability of one simple event comprised of equally likely outcomes a) Make predictions and express the probability as a fraction - Assessment limit: Use a sample space of no more than 20 outcomes	B. Theoretical Probability 1. Determine the probability of one simple event comprised of equally likely outcomes a) Express the probability of an event as a fraction. b) Express the probability of an event as a decimal - Assessment limit: Use a sample space of $10,20,25$, or 50 outcomes c) Express the probability of an event as a percent	B. Theoretical Probability 1. Determine the probability of an event comprised of no more than 2 independent events a) Express the probability of an event as a fraction, a decimal, or a percent - Assessment limit: Use a sample space of no more than 35 outcomes and decimals with no more than 2 decimal places	B. Theoretical Probability 1. Determine the probability of an event comprised of no more than 2 independent events a) Express the probability of an event as a fraction, a decimal, or a percent - Assessment limit: Use a sample space of 36 to 60 outcomes 2. Determine the probability of a second event that is dependent on a first event of equally likely outcomes a) Express the probability as a fraction, a decimal, or a percent - Assessment limit: Use a sample space of no more than 60 outcomes
			C. Experimental Probability 1. Analyze the results of a probability experiment a) Make predictions and express the experimental probability as a fraction, a decimal, or a percent - Assessment limit: Use no more than 30 results in the sample space 2. Conduct a probability experiment 3. Compare outcomes of theoretical probability with the results of experimental probability 4. Describe the difference between theoretical and experimental probability	C. Experimental Probability 1. Analyze the results of a survey or simulation a) Make predictions and express the probability of the results as a fraction, a decimal with no more than 2 decimal places, or a percent - Assessment limit: Use 25 or 50 results 2. Conduct a probability experiment 3. Compare outcomes of theoretical probability with the results of experimental probability 4. Describe the difference between theoretical and experimental probability	C. Experimental Probability 1. Analyze the results of a survey or simulation a) Make predictions and express the probability of the results as a fraction, a decimal with no more than 2 decimal places, or a percent - Assessment limit: Use 20 to 500 results 2. Conduct a probability experiment 3. Compare outcomes of theoretical probability with the results of experimental probability 4. Describe the difference between theoretical and experimental probability

STANDARD 6.0 KNOWLEDGE OF NUMBER RELATIONSHIPS AND COMPUTATION/ARITHMETIC - Students will describe, represent, or apply numbers or their relationships or will estimate or compute using mental strategies, paper/pencil or technology.

MATHEMATICS

GRADE 3	GRADE 4	GRADE 5	GRADE 6	GRADE 7	GRADE 8
3. Apply knowledge of money a) Represent money amounts in different ways - Assessment limit: Use money amounts (\$0-\$100) b) Determine the value of a given set of mixed currency - Assessment limit: Use coins and bills (\$0-\$100) c) Compare the value of two sets of mixed currency	3. Apply knowledge of money a) Compare the value of sets of mixed currency - Assessment limit: Use 2 sets of mixed currency and money (\$0-\$100) b) Determine the change from $\$ 100$				
B. Number Theory 1. Apply number relationships to: a) Identify and describe whole numbers as even or odd - Assessment limit: Use whole numbers (0-100)	B. Number Theory 1. Apply number relationships a) Identify and use divisibility rules - Assessment limit: Use the rules for 2,5 , or 10 with whole numbers ($0-1000$) b) Identify factors - Assessment limit: Use whole numbers ($0-24$) c) Identify multiples - Assessment limit: Use the first 5 multiples of any single digit whole number	B. Number Theory 1. Apply number relationships a) Identify or describe numbers as prime or composite - Assessment limit: Use whole numbers ($0-100$) b) Identify and use rules of divisibility - Assessment limit: Use rules for 2, 3, 5,9 , or 10 and whole numbers (0-10,000) c) Identify the greatest common factor - Assessment limit: Use 2 numbers whose GCF is no more than 10 and whole numbers $(0-100)$ d) Identify a common multiple and the least common multiple - Assessment limit: Use no more than 4 single digit whole numbers	B. Number Theory 1. Apply number relationships a) Determine prime factorizations for whole numbers and express them using exponential form		


```
STANDARD 7.0 PROCESSES OF MATHEMATICS - Students demonstrate the processes of mathematics by making connections and applying reasoning to solve and to co
A. Problem solving
fy the question in the problen
    l.Decide if enough information is p
    c. Make a plan to solve a problem
    lol
    . Idenity aternative waysio solve a problem
    g. Show that a problem might have multiple solutions or no solution
    h. Extend the solution of a problem to a new problem situation
    l
    a. Use inductive or deductive reasoning
    b. Make or test generalizations
    c. Support or recue mathematica staements or solution
    的 methods of mirect indirect, paragraph, or contradiction
    1. Present mathematical ideas using words, symbols, visual displays, or technolog
    a. Use multiple representations to express concepts or solution
    b. Express mathematical ideas orally
    c. Explain mathematically ideas in written form
    e. Express solutions using pictoria, tabular, graphical, or algebraic methods
    f. Explain solutions in written form
    g. Ask questions about mathematical ideas or problem
    wedback to revise mathematical thinkin
    D. Connections
    1. Relate or apply mathematics within the discipline, to other disciplines, and to lif
    a. Identify mathematical concepts in relationship to other mathematical concept
    b. Identify mathematical concepts in relationship to other disciplines
    c. Identify mathematical concepts in relationship to lifo
    Use the relationship among mathematical concepts to learn other mathematical concepts
```

